Python for AI Cheatsheet

Essential libraries and snippets for AI development

๐Ÿ“ฆ Core Libraries

NumPy

Numerical computing

pip install numpy

Pandas

Data manipulation

pip install pandas

PyTorch

Deep learning

pip install torch

Transformers

Pre-trained models

pip install transformers

LangChain

LLM applications

pip install langchain

OpenAI

GPT API client

pip install openai

Anthropic

Claude API client

pip install anthropic

Scikit-learn

Classical ML

pip install scikit-learn

๐Ÿ”ข NumPy Essentials

Creating Arrays

import numpy as np # Create arrays arr = np.array([1, 2, 3, 4, 5]) zeros = np.zeros((3, 3)) ones = np.ones((2, 4)) rand = np.random.randn(5, 5) # Normal distribution range_arr = np.arange(0, 10, 0.5) # Reshaping reshaped = arr.reshape(5, 1) flattened = reshaped.flatten()

Common Operations

# Math operations mean = np.mean(arr) std = np.std(arr) dot_product = np.dot(arr, arr) # Matrix operations A = np.random.randn(3, 3) B = np.random.randn(3, 3) matmul = A @ B # Matrix multiplication transpose = A.T inverse = np.linalg.inv(A)

๐Ÿผ Pandas Essentials

import pandas as pd # Create DataFrame df = pd.DataFrame({ 'text': ['hello', 'world', 'test'], 'label': [1, 0, 1], 'score': [0.9, 0.2, 0.8] }) # Load data df = pd.read_csv('data.csv') df = pd.read_json('data.json') # Filter and select positive = df[df['label'] == 1] high_score = df[df['score'] > 0.5] selected = df[['text', 'label']] # Apply functions df['text_len'] = df['text'].apply(len) df['text_upper'] = df['text'].str.upper()

๐Ÿ”ฅ PyTorch Basics

Tensors

import torch # Create tensors x = torch.tensor([1, 2, 3]) zeros = torch.zeros(3, 3) rand = torch.randn(5, 5) # GPU support device = "cuda" if torch.cuda.is_available() else "cpu" x = x.to(device) # Gradients x = torch.tensor([2.0], requires_grad=True) y = x ** 2 y.backward() print(x.grad) # tensor([4.])

Simple Neural Network

import torch.nn as nn class SimpleNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.layer1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.layer2 = nn.Linear(hidden_size, output_size) def forward(self, x): x = self.layer1(x) x = self.relu(x) x = self.layer2(x) return x model = SimpleNN(10, 64, 2) model.to(device)

๐Ÿค— Transformers (Hugging Face)

Quick Pipeline

from transformers import pipeline # Sentiment analysis classifier = pipeline("sentiment-analysis") result = classifier("I love this product!") # [{'label': 'POSITIVE', 'score': 0.9998}] # Text generation generator = pipeline("text-generation", model="gpt2") result = generator("Once upon a time", max_length=50) # Question answering qa = pipeline("question-answering") result = qa(question="What is Python?", context="Python is a programming language.")

Load Models Directly

from transformers import AutoTokenizer, AutoModel # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") model = AutoModel.from_pretrained("bert-base-uncased") # Tokenize inputs = tokenizer("Hello, world!", return_tensors="pt") # Get embeddings with torch.no_grad(): outputs = model(**inputs) embeddings = outputs.last_hidden_state

๐Ÿ“Š Text Embeddings

OpenAI Embeddings

from openai import OpenAI client = OpenAI() response = client.embeddings.create( model="text-embedding-3-small", input="Hello world" ) embedding = response.data[0].embedding # List of floats

Sentence Transformers

from sentence_transformers import SentenceTransformer model = SentenceTransformer('all-MiniLM-L6-v2') sentences = ["Hello world", "How are you?"] embeddings = model.encode(sentences) # Compute similarity from sklearn.metrics.pairwise import cosine_similarity similarity = cosine_similarity([embeddings[0]], [embeddings[1]])

๐Ÿ”Œ LLM API Calls

OpenAI

from openai import OpenAI client = OpenAI() # Uses OPENAI_API_KEY env var response = client.chat.completions.create( model="gpt-4o", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Hello!"} ] ) print(response.choices[0].message.content)

Anthropic Claude

import anthropic client = anthropic.Anthropic() # Uses ANTHROPIC_API_KEY env var message = client.messages.create( model="claude-sonnet-4-20250514", max_tokens=1024, system="You are a helpful assistant.", messages=[ {"role": "user", "content": "Hello!"} ] ) print(message.content[0].text)

โš™๏ธ Environment Setup

# Create virtual environment python -m venv venv source venv/bin/activate # Linux/Mac venv\Scripts\activate # Windows # Install common AI packages pip install numpy pandas torch transformers pip install openai anthropic langchain pip install sentence-transformers scikit-learn # Environment variables (.env file) OPENAI_API_KEY=sk-... ANTHROPIC_API_KEY=sk-ant-...
Tip: Use python-dotenv to load .env files: from dotenv import load_dotenv; load_dotenv()