Essential libraries and snippets for AI development
Numerical computing
pip install numpy
Data manipulation
pip install pandas
Deep learning
pip install torch
Pre-trained models
pip install transformers
LLM applications
pip install langchain
GPT API client
pip install openai
Claude API client
pip install anthropic
Classical ML
pip install scikit-learn
import numpy as np
# Create arrays
arr = np.array([1, 2, 3, 4, 5])
zeros = np.zeros((3, 3))
ones = np.ones((2, 4))
rand = np.random.randn(5, 5) # Normal distribution
range_arr = np.arange(0, 10, 0.5)
# Reshaping
reshaped = arr.reshape(5, 1)
flattened = reshaped.flatten()
# Math operations
mean = np.mean(arr)
std = np.std(arr)
dot_product = np.dot(arr, arr)
# Matrix operations
A = np.random.randn(3, 3)
B = np.random.randn(3, 3)
matmul = A @ B # Matrix multiplication
transpose = A.T
inverse = np.linalg.inv(A)
import pandas as pd
# Create DataFrame
df = pd.DataFrame({
'text': ['hello', 'world', 'test'],
'label': [1, 0, 1],
'score': [0.9, 0.2, 0.8]
})
# Load data
df = pd.read_csv('data.csv')
df = pd.read_json('data.json')
# Filter and select
positive = df[df['label'] == 1]
high_score = df[df['score'] > 0.5]
selected = df[['text', 'label']]
# Apply functions
df['text_len'] = df['text'].apply(len)
df['text_upper'] = df['text'].str.upper()
import torch
# Create tensors
x = torch.tensor([1, 2, 3])
zeros = torch.zeros(3, 3)
rand = torch.randn(5, 5)
# GPU support
device = "cuda" if torch.cuda.is_available() else "cpu"
x = x.to(device)
# Gradients
x = torch.tensor([2.0], requires_grad=True)
y = x ** 2
y.backward()
print(x.grad) # tensor([4.])
import torch.nn as nn
class SimpleNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super().__init__()
self.layer1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.layer2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = self.layer1(x)
x = self.relu(x)
x = self.layer2(x)
return x
model = SimpleNN(10, 64, 2)
model.to(device)
from transformers import pipeline
# Sentiment analysis
classifier = pipeline("sentiment-analysis")
result = classifier("I love this product!")
# [{'label': 'POSITIVE', 'score': 0.9998}]
# Text generation
generator = pipeline("text-generation", model="gpt2")
result = generator("Once upon a time", max_length=50)
# Question answering
qa = pipeline("question-answering")
result = qa(question="What is Python?", context="Python is a programming language.")
from transformers import AutoTokenizer, AutoModel
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModel.from_pretrained("bert-base-uncased")
# Tokenize
inputs = tokenizer("Hello, world!", return_tensors="pt")
# Get embeddings
with torch.no_grad():
outputs = model(**inputs)
embeddings = outputs.last_hidden_state
from openai import OpenAI
client = OpenAI()
response = client.embeddings.create(
model="text-embedding-3-small",
input="Hello world"
)
embedding = response.data[0].embedding # List of floats
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
sentences = ["Hello world", "How are you?"]
embeddings = model.encode(sentences)
# Compute similarity
from sklearn.metrics.pairwise import cosine_similarity
similarity = cosine_similarity([embeddings[0]], [embeddings[1]])
from openai import OpenAI
client = OpenAI() # Uses OPENAI_API_KEY env var
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
]
)
print(response.choices[0].message.content)
import anthropic
client = anthropic.Anthropic() # Uses ANTHROPIC_API_KEY env var
message = client.messages.create(
model="claude-sonnet-4-20250514",
max_tokens=1024,
system="You are a helpful assistant.",
messages=[
{"role": "user", "content": "Hello!"}
]
)
print(message.content[0].text)
# Create virtual environment
python -m venv venv
source venv/bin/activate # Linux/Mac
venv\Scripts\activate # Windows
# Install common AI packages
pip install numpy pandas torch transformers
pip install openai anthropic langchain
pip install sentence-transformers scikit-learn
# Environment variables (.env file)
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=sk-ant-...
python-dotenv to load .env files: from dotenv import load_dotenv; load_dotenv()